We start w/ the following lemma.
Lemma: - Rmax is bounded for the normalized RF ou M³ w/ Ric (0) >0.
M3 (a/ P: (b) >0-
11 3/ ACCO) 20
Proof:- We have from the pinching estimates that
Re = Rc ≥ QB²Rmin g
for some 13>0. So Myers's thurren =>
cliam (M) ~ 4 TT
cliam (M) 2 TT BJRmin
J- V // min
" the volume of the manifold is constant wiritig,
"" the volume of the manifold is constant wiretig, say V_0 and $R_C = R_C \ge 0$ =0 by Bishon-Günthe
volume companison thm, we have
$V_0 = V_0 I(B(p, diam(M))) \leq V_3(diam(M))$ $= 4\pi I(diam(M))^3$
= HTT (diam (M)) ³
·
$= 7 \left(\frac{3 \text{ Vo}}{4 \text{ T}}\right)^{\frac{1}{3}} \leq \left(\frac{3 \text{ Vo}}{4 \text{ T}}\right) \leq \frac{7 \text{ T}}{3 \text{ PiRmin}}$
\4π J 31'Rmin
= \mathbb{R} R min is bounded from above. Also, recall that $\frac{R_{min}}{R_{max}} \ge \frac{1}{2}$ but the LHS
Aloo, necall that Rmin > 1 but the LHS
Rmax

Now at $t=0$ $R-f=R(0)-1$. $Rmax(0) \leq 0$.
The unresponding ODE is $\frac{d\varphi}{dt} = 2R_{max}\varphi$
i.e, d log 1416)] = 2 Rmax (t) = p p(t) doesn't
i.e, d log 1414)] = 2 Rmax 1t) = p plt) doesn't change sign
=D R-f <0 is preserved along RF.
Now Roman - so as t - P = f - so as t - P
$= D \qquad \text{Um} \qquad S \text{Rmax (u) du} = \infty.$
f -3 () 0
Having proven that, we look at the corresponding
Hawing proven that, we look at the corresponding integral for the normalized flow to get
~ ~
$\int_{-\infty}^{\infty} R_{\text{max}}(\tau) d\tau = \int_{0}^{\infty} R(t) dt = 0$
J Kmax (T) d T = J (Ct) at - 3
as Rmax dt = (y-1 Rmax) (ydt)
But Rman 15 bounded = 1 the region of integration
But Rmax 15 bounded = p the region of integration must be infinite = p T = 00.
L'emergence of the Normalized Ricai flow
Convergence of the Normalized Ricai flow Want to prove that NRF converges as I - so to a

curvature.
The idea of the proof is similar to the proof of
the characterization of the maximal existence tenis:-
and then using the derivative estimates, we proved uniform bounds on spatial and time derivatives of
the metric = o we can take limits of higher order derivatives of g and = o limit metric is smooth.
So from the same ideas as before, if we want to show that $\tilde{g}(s)$ exists and is continuous then we must show that $\tilde{f}(s)$ and $\tilde{f}(s)$ exists and $\tilde{f}(s)$ continuous then we
$\int_{0}^{\infty} \left \frac{\partial \tilde{g}}{\partial t} \right _{0}^{\infty} dt \leq C.$
$\int_{\mathcal{R}_{c}} \frac{1}{ \mathcal{R}_{c} } \frac{1}{ $
$\int_{0}^{\infty} R_{c} - \frac{n}{3} \tilde{g} d\tau < C.$
Now the pinching estimates tell us that
Re - = Rg 2 _ CR - 8

R2

We'll prone that the entegrand en (1) is hounded
by a decaying exponential, so ever ès un integrate
We'll prone that the entegrand vie (1) is hounded by a decaying exponential, so even if we integrate form o to o as in the case of NRF, we'll be fine.
we prove the following for this:-
· · · · · · · · · · · · · · · · · · ·
Lemma 1 If $(H^3, \tilde{g}(T))$ is a solution of NRF W / Ric(0)>0 then $\tilde{J} \in >0$ 8.t. $\tilde{R} \geq \in V$ $V > 0$.
demma 2 3 constants C, 8>0 s.t.
\widete = \widete\widete_g \le Ce^{-\delta_t}.
so ès are prone that $ R-\widehat{r} $ is exponentially bounded
then we can combine it by Lemma 2 to get
a bound on the integrand sie (1).
remme 3 3 Constants C,8>0 s.t.
Rmax-Rmin < Ce-8re.
De'll proue the lemmas later, for now lot's use them to
forme the theorem.
Theorem If (M3, g(T)) is a sol of NRF w/ Ric(o)>0. Huen g(T) exists for all time and converges uniformly
then 9(I) exists for all time and converges uniformly

as it -so is a remainible ment of (a).
broof. From homma 223 alique, we get $\int_{0}^{\infty} \left \frac{\partial g}{\partial t} \right dt = \int_{0}^{\infty} \left \frac{R_{c} - \frac{r_{c}g}{3g}}{3g} \right dt$
$ \frac{2}{\sqrt{2}} = $
= 0 as in the characterization of singular time case,
3(T) converges uniformly to a continuous metric $\tilde{g}(\sigma)$ as $r \to \infty$.
The next step is to prove that the convergence is
Conso that g(o) can be smooth and so that the
curvature of the normalized flow converge to the correspondent

Conso that g(x) can be smooth and so that the corresponding cumultures of the limit metric, as the cumultures are 2^{nd} -order in the mitric. We need this so we can conclude that the pinching results we have proven for the flow leads to a similar results for the limit

metric and 30 the limit metric having constant unvalue
Theorem The limit metric $g(\sigma)$ is smooth and the convergence of $g(\tau)$ to $g(\sigma)$ as $t-\sigma$ is uniform in every t^m morm.
assuming this theorem we can state and prove the final theorem for the course.
Theorem: - $\tilde{g}(s)$ is a smooth metric ω constant position - we sectional curvature. Proof: - $\tilde{g}(\tau) \longrightarrow \tilde{g}(s)$ in C^0 , C^1 and C^2 morms.
Proof s- $\tilde{g}(\tau) \rightarrow \tilde{g}(0)$ in C^0 , C^1 and C^2 morms. The testing the limit implies that the leinstein tensor \tilde{E}_{∞} of $\tilde{g}(0)$ vanishes as $\tilde{E}_{\infty} = \tilde{g}(0) = \tilde{g}(0) = 0$
Es = lim \varepsilon(t) \leq lim Ce^{-8\tau} = 0 \tau \in \tau
Phis also proues the Poincaré conjecture for 11^3 which admits a metric of posituie Ricci curvature.
Now we'll proue Jemma 1,2,3 & the theosess.

Lemma 1 If (H³, g(T)) is a solution of NRF w/ Ric(0)>0 then F ∈ >0 s.t. R ≥ € F T>0.
Proof: We use the following result to prove this bemma If M is simply-connected, dim ≥ 3 W sectional curvature I/w 1/K and K then the inj. radius of M ≥ TT.
If Mis Simply-connected dim > 3 W sectional curvature
4 mark their the Ing. radius of 112 11.
Now, we proved min $2(x_1t) \ge (1-\epsilon) \max_{x_1 \in X} \lambda(x_1t)$
Now, we proved min $2(x_1t) \ge (1-\epsilon) \max_{\lambda} \lambda(x_1t)$ $\frac{2(x_1t)}{\lambda(y_1t)} = 1$ as $t = T$, uniformly for all
x, y ∈ M. By scale-invariance, $\frac{\widehat{\Sigma}}{\lambda}$ — 1 uniformly as
= M is becoming as pinched as we want = will be - pinched and the constant K in the previous result 4 be equal to a multiple Rmin.
Jepinched and the constant K in the previous result be equal to a multiple Rmin. So applying the result above to the universal cours of M. By the Bishop-Günther vol. comparison thm, we get
$vol(N) \ge C inj(N)^{3} \ge C \left(\frac{\pi}{4K}\right)^{3} \ge CR^{-3/2}$
Also, the Ricci tensor, $Rc \ge 2\beta^2 Rg = 0$ by Myers's thm, $T\Gamma_1(M)$ is finite = 0
$vol(N) = T_{1}(M) vol(M) = constant$

Rmax has a posituie louver bound and also Rmin has a louver bound.
has a lower bound.
We'll need to use the maximum principle and would like to use the endulusing equations for the unnormalities of flow. Now along the NRF, $\tilde{g} = \psi \tau g$ and $\tilde{s} \circ any$ tensor $\tilde{P} = \psi \tau P$.
demme: - If P satisfies $\frac{\partial P}{\partial t} = \Delta P + Q$ then $Q = \frac{\partial P}{\partial t} = \frac{\partial P}{\partial t} + \frac{\partial P}{\partial t}$
$\frac{\partial P}{\partial T} = \Delta P + Q + \frac{2rn}{3}P.$
$\frac{\text{pnoof}}{\text{ot}} := \text{Recall} \frac{\partial T}{\partial t} = \text{proof} = \frac{\partial \widetilde{P}}{\partial t} = \frac{\partial \widetilde{P}}{\partial t} \cdot \frac{\partial L}{\partial t} = \text{proof} \cdot \frac{\partial \widetilde{P}}{\partial t} = \frac{\partial \widetilde{P}}{\partial t} \cdot \frac{\partial L}{\partial t} = \frac{\partial \widetilde{P}}{\partial t} \cdot \frac{\partial \widetilde{P}}{\partial t} = \frac{\partial \widetilde{P}}{\partial t} \cdot \frac{\partial L}{\partial t} = \frac{\partial \widetilde{P}}{\partial t} \cdot \frac{\partial L}{\partial t} = \frac{\partial \widetilde{P}}{\partial t} \cdot \frac{\partial \widetilde{P}}{\partial t} = \frac$
Also, $\Delta = g^{ij} \nabla_i \nabla_j = 0$ $\Delta = \gamma - n - \Delta = 0$ $\hat{Q} = \gamma - n - Q$.
:. 2p = y-1 0 (4rp) = yn-10p + nyn-2 dyp
$= \psi^{-1}(\Delta P + Q) + N\psi^{-1}(\frac{2\pi}{3}\psi^{2})P(\frac{1}{4}w^{2})$
$= \frac{\widetilde{\Delta}\widetilde{P} + \widetilde{Q} + 2\widetilde{r}n\widetilde{P}}{3}$

demma 2 3 constants C, 8>0 s.t.

1F1= 1K- \$31 - 3

So ès une prome that $|R-\tilde{r}|$ is exponentially bounded then use can combine it by Lemma 2 to get a bound on the integrand in O.

proof: We know that $|\tilde{E}|^2 \leq (\tilde{\lambda} - \nu)^2$, so we'll prove if for the lotter. We'll show

√2 = Ce-8t (μ+2)

is hounded on Rman≤C.

Using the Uhlenbeck trick for the NRF Quia = Riva - i va

One can check that

2 Robed = DRabed + 2 (Babed - Babbet + Bacbd - Badbe)
- St Rabed.

So for the eigenvalues

$$\frac{d}{d\tau} \begin{pmatrix} \widetilde{\lambda} \\ \widetilde{\eta} \\ \widetilde{\pi} \end{pmatrix} = \begin{pmatrix} \widetilde{\lambda}^2 + \widetilde{\eta} \widetilde{\omega} - \widetilde{v} \widetilde{\lambda} \\ \widetilde{\eta}^2 + \widetilde{\lambda} \widetilde{\omega} - \widetilde{v} \widetilde{u} \\ \widetilde{v}^2 + \widetilde{\lambda} \widetilde{u} - \widetilde{v} \widetilde{v} \end{pmatrix}$$

apply the v.b. max principle w/ the set

$$K = \{ M \mid e^{\delta \tau} (\tilde{\lambda}(m) - \tilde{\nu}(m)) - G(\tilde{\nu}(m) + \tilde{\mu}(m)) \leq 0 \}$$

for some Comil 8 to be chosen.

So, we get
$$\frac{d}{dt} | oq \left(e^{gt} \frac{\lambda - \nu}{\lambda + \nu} \right) = \frac{1}{e^{gt} \frac{\lambda - \nu}{\lambda - \nu}} \cdot \left(\frac{g^{gt} \frac{\lambda - \nu}{\lambda - \nu}}{\mu + \nu} + e^{gt} \frac{\partial t}{\partial t} \right)$$

$$\frac{d}{dt} | oq \left(e^{gt} \frac{\lambda - \nu}{\lambda - \nu} \right) = \frac{1}{\mu + \nu} \cdot \left(\frac{g^{gt} \frac{\lambda - \nu}{\lambda - \nu}}{\mu + \nu} + e^{gt} \frac{\partial t}{\partial t} \right)$$

$$\frac{g}{\mu + \nu} = g - (\mu - \nu) - \mu^2 + \nu^2$$

$$\frac{h + \nu}{\lambda - \nu} = \frac{1}{(h + \nu)^2} \cdot \left(\frac{h^2 + h^2 - h^2 - h^2 + h^2 - h^2 - h^2}{(h + \nu)^2} \right) \cdot \left(\frac{h^2 + h^2 - h^2 - h^2 - h^2 - h^2 - h^2}{(h + \nu)^2} \right)$$

$$= \frac{1}{(h - \nu)(h + \nu)} \cdot \left(\frac{h^2 + h^2 - h^2 - h^2 - h^2 - h^2}{(h + \mu)^2 - h^2 - h^2} \right) \cdot \frac{h^2 - h^2 - h^2 - h^2}{(h + \mu)^2 - h^2 - h^2} \cdot \frac{h^2 - h^2}{(h + \mu)^2} \cdot \frac$$

Now from Lemma 1, choose E>Os.t.

2E = 17214 = (1+B)(H+2) for some

Now G= yr-2G, so we can show that OG < DG+BRIEI2 =D 96 2 2G + BREP - 48G 8T 2 3G + Ce - 8T - 8G =D @ (est G-Ct) = D (est G-Ct) est $G - C_T \leq C$ = D G is exponentially decaying = D $[\nabla R]^2$ is also decaying exponentially as R is bounded above. Now we can prove the final theorem. Theorem The limit metric $\hat{g}(\sigma)$ is smooth and the convergence of $\tilde{g}(\tau)$ to $\tilde{g}(\sigma)$ as $t-\sigma$ is uniform in every t^m morm.

proof: - Recall from the proof the max existen

witerion than that we need to prove

\$\int_{\pi} \pi_{\pi} \pi_{\pi}

Which will be proved if we can show that
10KF1 < Ce-8t
$w/F = Re - \frac{1}{3}r\tilde{g}$.
we'll prove that the derivatives of F are exponentially
houmded.
Enough to show the bounds for Rc, i.e.
hemma !- J Ck, 8k >0 s.t.
TKRC ≤ CKe-SKT B K≥1.
Proof. Note that the metric is not becoming Ricci flat as T-0 -p k=0 is NOP true. So we prove
this by induction by we work from $k \geq 1$.
The sidea is similar to the proof of Shirs estimates and the gradient estimates for R. Note $ \hat{R}c \leq Rc - \frac{1}{3}\hat{R}\hat{g} + \frac{1\hat{R}l}{3} \leq C$.
Note $ \widetilde{Rc} \leq Rc - \frac{1}{3}\widetilde{R}\widetilde{g} + \frac{ \widetilde{R} }{3} \leq C$.
Assume ∇jRc $\leq Ce^{-8\tau}$ for $1\leq j\leq k-1$.
os in duic 3, Rur is just a combination of Rc terms — the evalution for Rm from the proof of shis
= the evalution for Rm from the proof of shis

estimates can be used for Rc =D
$\frac{\partial}{\partial t} \nabla^{k} Rc ^{2} = \Delta \nabla^{k} Rc ^{2} - 2 \nabla^{k+1} Rc ^{2}$
+ Zi VÎRc* VK-ÎRc* VRc.
for the NRF, we'll get an extoa term of (2nr) [72]
and : FI = CR = 0 the above turn will be subsumed in
the j=0 case in the summation.
on Using the Induction hypo:-
Otlykec/ = DIDKRcl2-a DK+1Rcl+ DiDiRc* TKipc. VRC
\[\leq \lambda \rangle \times \rangle \color \rangle \
< \(\vec{1} \vec{7} \vec{R} \vec{1} = \varrho \vec{7} \vec{7} \vec{R} \vec{1} = \vec{1} \vec{7} \vec{7} \vec{R} \vec{1} \vec{1} \vec{7} \vec{1} 1
NOT good enough as we do not get exponential decay. So we use the same trick so the Shi's estimates
but instead of adding multiples of $ Rc ^2$ which DO NOT have exponential decay, we add $ E ^2$ which does have exponential decay.

of
$$|\nabla| = |\nabla| = |$$

So, we get OTN = BN + Ce-St-v Now V(0) < C' by the compactness of M and the $\frac{d\varphi}{dt} = Ce^{-ST} - \varphi$ which has $\varphi(\tau) = Be^{-\tau} + C = -8\tau$. : by the maximum principle, 17kRc12EVECke-8kt Noes we can do the same thing as the maximal existence time criterior to house hounds on OKP and get g(t) - g as T-so in every C*-norm and exponential.