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The next theorem proves that the normalized RF
exists for all time
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Having proven that we look at the corresponding
integral for the normalized flow to get
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smooth metric of of constant positive sectionalcurvature
the idea of the proof is similar to the proofof

the characterization of the maximal existence
tenne

we proved that if we have hounds on thecurvature
then the limit metric exists and is continuous
and then

using
the derivative estimates we proved

uniform bounds on spatial and time derivativesof
the metric so we can take limits of higher orderderivatiies ofg

and so limit metric is smooth

So from the same ideas as before if we want to
show that g a exits and is continuous then we

must show that F C a St
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We'll prove that the integrand et is bounded

by a delaying exponential so even y we integrate

four o to a as in the caseof NRF we'll befine

we prove the following for this
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so y are prove that 1k El is exponentiallyhounded
then we can combine it w Lemma2 to get
a hand on the integrand lie
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We'll prove the lemmas later for now let's use themto
frame the theorem
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The next step is to prove that the convergence is
Cso that g a can be smooth and so that the
curvature of the normalized flow converge tothe

correspondingcurvatures of the limit metric as thecurvatures
are 2nd order lie the metric we need this so we

can conclude that the pinching results we haveproven
for the flow leads to a similar resultsforthe limit



metric and to the limit metric having constant curvature

theorem The limit metric a is smooth and the

convergence of JIT toga as k a is uniform in

every Cm
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Assuming this theorem we can state and prove the

final theorem for the course
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80 818 is an Einsteinmetric o ga has constant

positive sectional curvature

This also proves the Poincaréconjecture for t which
admits a metric of positive Ricci curvature

Now we'll proveLemma I 2,3 the theorem
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Imax has a positive lower bound andalso I min
has a lower hand 1

We'll need to use the maximum principleandwould
like to use the endution equations for the

unnormalizedflow Now along the NRF J vg
and
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so if we prove that IR it is exponentiallybounded
then we can combine it w Lemma2 to get
a hand on the integrand lie

Roti we know that IEP 1 13 so we'll prove it

for the latter We'll show
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To K is preserved by the ODE and the result is

proved
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Proof same idea as before to have an exponential

hand on IFR andthenintegratealong pathsand

having an uniform upper bound on the diameterwill

give the result
We do a similarl max principle argument to
G 1 1 α IEP so chosen later
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Now we can prove thefinal theorem

Them the limit metric a is smooth and the

convergence of g T to Jra as E a is uniform in

every cm norm

Proof Recallfrom the proof the max existen

criterion then that we need to prove
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which will be provedif we can show that
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Proof Note that the metric is not becoming Ricci

flat as I a 12 0 is NOT true So we prove
this by induction by we work from K 1

The idea is similar to the proofof Shi's estimates
and the gradient estimates for R
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the evolution for Rm from the proofof shis



estimates can be usedforRc
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Not goodenough as we donotgetexponential delay
so we use the same trick as the Shi's estimates

but instead of addingmultiplesof IRC whichDoNOT
have exponential decay we add IEP which doeshave
exponential decay
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so we get
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